Who We Are? .. 4
 Our Evolution.

Sustainable Facades 6
 Non-Active Panels.
 Active Panels.
 Sustainable Facade Benefits.
 Conventional Material vs. Sustainable Facades.

Why Us ... 12

Our Core Technology 16
 Ultra Lightweight Advanced Backing Technology.

Endless Material Options 18
 Stone Facing.
 Porcelain Facing.
 Coated Aluminum Facing.
 Brick Facing.
 Solar Facing.

Endless Fabrication Options 25
 Adaptable Panel Sizes.
 Customizable Elements.

Installation Systems 28
 Installation Principles.

Rainscreen System.
Pre-Panelized System.
Unitized Facade Integration to Other Assemblies.
Customizable Integrations & Special Projects.

Testing & Certifications 35
 Testing.
 LEED Certifications.

Services & Warranties 38
 Consulting Services.
 Exceptional Warranty.

Projects ... 41

Appendix .. 55
 Backing Performance.
 LEED Ratings.
 Unique Performance Characteristics.
 Testing.
We are a developer and manufacturer of advanced cladding systems, evolved from almost 20 years of perfecting the art and science of cladding with an ultra lightweight, strong, and highly integrated system. Integrated solar cladding is the natural evolution of these facade materials that focuses on sustainability, energy-generation, and beauty.

Our sustainable facades are designed to expedite construction schedules, reduce construction costs, and improve building performance by offering high-performance external envelope assemblies with thermal efficiency, improved fire safety performance criteria, increased design/application versatility, and even energy generation for new construction, renovation, and retrofits.
OUR EVOLUTION

2003
GCAT Group
GCAT Group was created to add value to the construction industry by focusing on natural and sustainable products that improve manufacturing efficiency, project construction, and lifetime sustainability of materials.

2008
Artisana
Artisana was the creator of the finest cladding products used in residential applications. Artisana developed a single profile grinding tool to increase the speed and energy efficiency of profile production.

2011
Stone Lamina
Producer of a highly integrated, lightweight architectural cladding system, designed to lower costs, improve performance, and increase design/application versatility while bringing a sustainable approach to cladding.

2014
Cladify
Cladify was the natural evolution from Stone Lamina to other hard surface materials featuring a limitless facing material range with a composite panel cladding system used for residential, commercial, and institutional projects.

2015
Sustainable Facade R&D
The Research and Development team was founded to develop a sustainable solution to seamlessly integrate solar technology into the existing Cladify system.

2019
New Mitrex & Cladify Facility
New Mitrex & Cladify factory opens featuring a fully automated, custom-designed manufacturing facility capable of producing active panels (Mitrex) and non-active panels (Cladify).

2019
Mitrex Solar Technology
Mitrex evolved from Cladify by introducing building-integrated photovoltaics (BIPV) that transforms the exterior of a building into a vertical micro-power plant.

2021
Solar Cladding Facades
Mitrex launched its first-ever solar integrated product. Solar Cladding is a cost-effective, sustainable, and reliable cladding material used for high rise, commercial, and residential applications.

2021
Hybrid Pre-Panelized System
The hybrid pre-panelized system is a lightweight alternative to window wall/precast architectural wall panels that allows rapid installation from the inside.

2022
Solar Railing, Glass & Noise Barrier
Mitrex launches Solar Railing and Solar Glass, taking advantage of any surface to convert structures into energy-generating power plants. Solar Noise Barriers and sound-absorbing panels allow for adoption everywhere.
SUSTAINABLE FACADES

SMART CORE TECHNOLOGY
INTERCHANGEABLE FACING
VERSATILE SOLUTIONS
+ENERGY GENERATION

Our sustainable facades are a truly integrated cladding solution with active and non-active options designed to meet the needs of any application.

The composite cladding is a precision-made and engineered system designed to revolutionize the way materials can be used as cladding. With our product engineering and design capabilities, there are virtually no applications in which one would choose conventional cladding over our composite panels.

The solution is a highly integrated cladding system designed to lower costs, improve performance, and increase design/versatility for any application. This high-quality cladding system allows architects, designers, builders, engineers, and contractors to improve design aesthetics and marketability of their commercial, institutional, residential, or multi-residential projects.

Our sustainable facades offer different types of solutions depending on your requirements. Each panel can be attached through one of three systems—rainscreen system, pre-panelized system, or unitized facades, depending on the application and underlying material.

The panels can be supplied and installed on both vertical and horizontal surfaces for a fraction of the cost of alternative panels on the market. They provide remarkable savings in terms of transportation, installation time, installation skill required, labour costs, and structural requirements.

These panels are strong, ultra lightweight, low cost, easy-to-install, impact and crack resistant, fire and heat resistant, waterproof, environmentally sustainable, and can be made from many materials in virtually any pattern, shape, or size imagined. Complete with an exceptional warranty, this beautiful composite panel is the cladding system of choice for transformational design, as well as tight construction budgets.

NON-ACTIVE PANELS
Offered by the Cladify branch, our non-active panels feature interchangeable facing materials over an ultra-lightweight advanced backing system consisting of an aluminum honeycomb network between solid aluminum sheaths. The cladding system has endless material options, from porcelain to stone, coated aluminum, and brick. Combining that with a versatile backing system, our non-active panels are perfect for any application.

ACTIVE PANELS
Our active panels by Mitrex feature integrated solar technology (BIPVs) that allow for seamless energy generation without sacrificing aesthetics. The panels generate energy and supply it back to the structure while saving energy costs and reducing carbon emissions. Available in any pattern or color imaginable, our active solar cladding allows architects, building owners, and developers to incorporate solar technology into any project.
NON-ACTIVE PANEL

- Ultra lightweight aluminum honeycomb core technology.
- Interchangeable, multi-facing materials such as stone, porcelain, glass, brick, or coated aluminum surfaces.
- Mix and match different facings without altering the installation.

Customizable Facing
- Porcelain
- Wood
- Brick
- Stone
- Coated Aluminum

Ultra Lightweight Advanced Backing Technology
ACTIVE PANEL

- Sustainable, energy generating facades at no extra cost.
- Energy-efficient solution for both existing and new facades.
- Endless surface design options.

Customizable Facing

Solar Cell

Ultra Lightweight Advanced Backing Technology

22.5% Cell Efficiency
OVERVIEW

SUSTAINABLE FACADE BENEFITS

- Versatile, integrated panel components
- Customizable facings, materials & shapes
- Various panel size options
- Cost-effective
- Strong & durable panels
- Ultra lightweight system
- Versatile applications
- Rapid fabrication

- Easy to install
- Safety-tested
- Highly precise surfaces
- No specialized site conditions
- Environmentally-friendly
- Fireproof

SOLAR ENERGY GENERATION

Versatile, integrated panel components
Customizable facings, materials & shapes
Various panel size options
Cost-effective
Strong & durable panels
Ultra lightweight system
Versatile applications
Rapid fabrication

Easy to install
Safety-tested
Highly precise surfaces
No specialized site conditions
Environmentally-friendly
Fireproof
CONVENTIONAL MATERIAL VS SUSTAINABLE FACADES

Overview

General Cost
- Conventional Material: Fr $++
- Sustainable Facades: Fr $++

Environmentally Friendly
- Conventional Material: 15 Panels (250 SQFT)
- Sustainable Facades: 60 Panels (1000 SQFT)

Panel Size
- Conventional Material: 32” x 16”
- Sustainable Facades: 48” x 96”

Panel Strength
- Conventional Material: Full Condition
- Sustainable Facades: 6

Panel Weight
- Conventional Material: Site Condition
- Sustainable Facades: 5

Installation Speed
- Conventional Material: 1000 SQFT = 10 Skid
- Sustainable Facades: 1000 SQFT = 1 Skid

Site Condition
- Conventional Material: Average scrap, waste debris left behind with 1000 SQFT
- Sustainable Facades: Average scrap, waste debris left behind with 1000 SQFT

Full Condition
- Conventional Material: Standard construction projects
- Sustainable Facades: Almost any project

General Cost
- Conventional Material: 60 Panels (1000 SQFT)
- Sustainable Facades: 60 Panels (1000 SQFT)

Environmentally Friendly
- Conventional Material: Transportation Cost
- Sustainable Facades: Volume of scrap + Extraction Costs
Our sustainable facades have numerous benefits over traditional cladding systems.

Our cladding is highly engineered and manufactured to exceedingly precise levels of quality and finishing.
ACTIVE & NON-ACTIVE PANEL OPTIONS
We offer our sustainable facade solutions in two options: active solar cladding that can generate energy with integrated solar technology and non-active cladding with limitless facing material options. The option of energy-generating active facade products can allow any structure to become a micro powerplant without altering aesthetics or increasing costs.

INTERCHANGEABLE MATERIALS
The panels can be engineered with virtually any facing material in the world! From brick to stone, porcelain, glass, metal or even solar, our products can conform to any design need. The interchangeable facings allow for easy and seamless incorporation into any project and offer truly versatile solutions.

CUSTOM TEXTURES, SHAPES, & SIZES
Not only can our panels be made with almost any material available, but there are custom options to suit various textures, finishes, shapes, and sizes.

VERSATILE APPLICATIONS
Ideal for new, out-of-the-box design ideas because they can be fabricated into virtually any shape, size, or pattern required. Perfect for exterior or interior applications on any surface in new construction, renovations, and retrofits for any building type.

EXTREMELY STRONG
Our cladding panels have exceptional crush strength and stiffness, constant crush strength, structural integrity, and fatigue resistance. Thicker honeycomb cores will provide even greater strength and spans.

THIN & LIGHTWEIGHT
Up to 80% lighter than traditional stone, steel, wood, or common partitioning materials. They are typically only 1" thick, leaving more room for insulation and floor space. This also means greater ease-of-use and significantly lower costs for transportation, handling, and installation.

HIGHLY INTEGRATED PANEL COMPONENTS
A building envelope composed of both typical cladding and solar cladding is possible with Cladify and Mitrex panels, allowing for fully integrated energy generation. The various types of panels are engineered in such a way that they seamlessly integrate with one another for virtually any cladding application imagined.

RAPID FABRICATION
Our panels can be fabricated in a relatively short time frame at our fully automated facility. Panels can be constructed as work progresses and delivered on-site according to your schedule, ready to install. As a single-source supplier, the scheduling and production staff can help to keep client project schedules on track.

YEAR-ROUND INSTALLATION
The panels are fabricated under factory-controlled conditions, and they can be installed year-round. Harsh winter weather and rain will have minimal impact on the production and installation schedules.

RAPID INSTALLATION SPEED
With its high-strength and low-weight density of approximately 3.2 lbs/ft²,
installers can quickly and easily install our panels. Lightweight panels allow smaller crews to install and cover more area faster than with conventional materials. A faster erection will lessen the contractor’s risks and costs associated with weather and material damage during construction.

QUICKER & LOWER COST DESIGN
Our system takes less time to design than conventional brick, masonry, or traditional cladding systems. It offers designers and engineers pre-engineered strength capabilities and pre-designed anchoring systems. This eliminates the multiple variables of conventional cladding materials that can slow down the design and engineering process.

LOW COST
The panels are much lower in cost when you compare the costs of purchase, transportation, handling, and installation of alternative cladding options.

HIGHLY PRECISE & FLAT SURFACE
Our panels can achieve highly flat surfaces, creating a seamless building envelope. Accurate and trouble-free installations allow us to achieve precise surfaces in any project.

EXCELLENT FIRE RESISTANCE
The aluminum honeycomb panels are highly fire-resistant compared to wood, PVC, insulation, drywall, and other sheathing materials. They are composed of non-combustible materials and are rated UBC Class 1 for fire and are self-extinguishing.

GOOD SOUND PROOFING & DAMPENING
The hollow, honeycomb core is highly absorbent to sound and can be used in numerous sound damping and soundproofing applications.

BLAST, EARTHQUAKE, & IMPACT RESISTANT
Our panels are remarkably impact- and crack-resistant because they flex without breaking. They can withstand 60 times more impact than a 1 3/4” solid granite panel when tested with a large missile impact test. That means that they are blast and earthquake-resistant when
used as an exterior envelope.

IMPERVIOUS TO MOISTURE PENETRATION
The panels are impervious to moisture penetration which can cause mold or mildew.

APPLICATION SOLUTION CONSULTING
As architects, engineers, and experienced field technologists, we know how to specify and apply our products to solve real-world design and construction problems. Everything from complex design challenges to never-been-done-before design concepts, to achieving demanding construction budgets, are all within our reach. With more than 20+ years of application experience, we know how to develop creative and elegant solutions to meet your needs.

AN EXCEPTIONAL WARRANTY
Our panels are guaranteed not to delaminate for the life of the structure, provided that they are installed properly using certified installers. For our solar facades, the warranty ensures the hardware will last for 25 years and guarantees that after 25 years the minimum efficiency will be 80% of the original energy generation.

ENERGY GENERATION
With our solar cladding, there is an added benefit of energy generation with the integrated solar components in the cladding product. The solar technology produces power on the building envelope and supplies the energy directly back to the structure.

LOW CARBON EMBODIMENT
Sustainability is at the core of our facades. For Mitrex, the integrated solar panels generate enough green energy to offset production-related carbon emissions, unlike traditional materials. On average, our Solar Facades can offset the carbon needed to make them in 4.5 years and remove 557.75 kg of CO₂ in 30 years.

ENVIRONMENTAL IMPACT
With our solar cladding, just 2 M² can produce 6,192 kWh of electricity, offsetting 4.4 metric tonnes of CO₂ over 30 years. Equating to: Powering 1 single-family home, planting 2,690 trees, removing 1 gasoline powered car off of the road, and charging 62 electric vehicles.

CONTRIBUTES TO LEED CERTIFICATION
Our solutions can meaningfully contribute to LEED designations for new builds and retrofits. Cladify panels can contribute up to 33 points toward LEED certification, and Mitrex can contribute up to 40 points with energy generating panels.
At the foundation of our product is our ultra lightweight smart core technology—a series of aerospace wafer cores that have been adapted for use in the creation of composite cladding panels for the construction industry.
Our panels are constructed using a unique, laminated, composite material structure for extreme strength, low-weight, and ductility. The panels are made from 3003 aluminum alloy foil in the form of a honeycomb cell core sandwiched between two continuous layers of solid aluminum sheathing. On top of the honeycomb core is 1-5mm (0.04-0.20”) of facing material bonded with a special form of aviation epoxy adhesive. This epoxy was chosen for its ability to withstand 300 mile/hr winds, very high sheering forces, tensile forces, and a wide range of temperature extremes... all without delamination or losing any structural integrity.

WHY USE A 100% ALUMINUM HONEYCOMB CORE?
The key to the unique properties of our Composite Honeycomb Panel Technology is the design of the aluminum honeycomb cell core. Not all cladding manufacturers use an aluminum honeycomb core coupled with aluminum sheathing on either side. Using aluminum throughout the core allows the composite panel to achieve its incredible performance characteristics, such as its ability to sustain a large missile impact of more than 4,000 lbs/ft².

CUSTOMIZATION OF STRENGTH CHARACTERISTICS
The honeycomb core can vary in cell size and in thickness to achieve the desired strength characteristics depending on the application. Generally, exterior applications require thicker cores with larger cells than interior applications.

ALUMINUM HONEYCOMB PANEL EDGE CLOSURE DESIGN
Exposed edge areas are a source of potential weakness in the design as they may be susceptible to local impact or environmental damage. Edge closures are also important because they may also provide localized reinforcement, attachment points, or simply meeting aesthetic requirements. We have several edging solutions available depending on the application required.
We offer an endless variety of active and non-active materials, colours, textures, and finishes of cladding facing, suitable for any application. Options can be tailored to the needs of the customer and the project.
STONE FACING
NON-ACTIVE

ANGOLA BLACK
ADAIR VEIN CUT
CALACATTA MICHELANGELO
ERAMOSA CROSS CUT

SILVER-STAR
TRAVERTINO SILVER
PORTORO

AND MANY MORE...

DESIGN
STONE FACING
NON-ACTIVE

ANGOLA BLACK
ADAIR VEIN CUT
CALACATTA MICHELANGELO
ERAMOSA CROSS CUT

SILVER-STAR
TRAVERTINO SILVER
PORTORO

AND MANY MORE...

DESIGN
PORCELAIN FACING
NON-ACTIVE

- CREMITA
- LOTO PERLA
- SUPERFICIE GRAFITE
- CLOSIOUM BROWN
- FLUSO BLACK
- TAN BROWN
- KERAMOS
- ALFEIOS ROSA
- AND MANY MORE...
COATED ALUMINUM FACING
NON-ACTIVE

DEEP BLACK
DOLPHIN GREY
SILVER FOIL
NICKEL
BEAVER
FADING ONYX
JET STREAM
ROMAN SILVER
AND MANY MORE...
BRICK FACING
NON-ACTIVE

SPICE WHITE GLAZED
QUAKER BLEND
RIVERDALE SMOOTH
SEA GRAY SMOOTH
CHARCOAL
CARBON BLACK
BLACK GLAZED
GORRI
AND MANY MORE...
VENULA
Solar Stone

POLARIS
Solar Solid Colour

MONTANEAA
Solar Slate

GALAXIAS
Solar Stone

MANDORLA
Solar Wood

LIMUNADA
Solar Solid Colour

CASTANEA
Solar Wood

RUBRICA
Solar Brick

AND MANY MORE...
Our panels can be produced with curved or angular shapes, grooves, and in virtually any size. Our advanced manufacturing process ensures panels are completely customizable in terms of shapes, designs, and sizes within the maximum dimensions.
ADAPTABLE PANEL SIZES

Non-active standard sized panel is 4ft by 8ft, with a maximum of 5ft by 12ft. We can also cut-to-size custom square or rectangular shapes, cut-outs in panels, and other angular and curved shapes depending on your needs. In a nutshell, we can do almost anything that you can conceive or require.

Active Solar Facade panels are available in virtually any size. Our standard panel sizes range from 2-3.5 ft by 4-6.66 ft. When larger panels are needed, we also offer customized panels that can be a maximum of 6.5 ft by 12 ft.

Our panels can be provided in varying thicknesses starting from 9/16 in. (14 mm) and weigh only 3.2 lbs/ft² (15.6 kg /m²).
CUSTOMIZABLE ELEMENTS

Our panels can be embedded with names, emblems, logos, signs, or other custom designs through CNC machines. This is perfect for exterior or interior retail and commercial applications.
Cladify and Mitrex panels are very versatile and are only limited by the imagination in terms of how they can be used. They can be used in place of any other cladding product, including applications where solid dimensional stone is specified, or as an alternative when dimensional stone is too heavy to be used economically. Applications include new exterior and interior applications, and renovations and retrofits.

VERSATILE SOLUTIONS

INSTALLATION SYSTEMS

Our solutions are truly versatile and only limited by the imagination in terms of use or application. We offer various installation systems to suit any project need. Our sustainable facades can be used in place of any other cladding product, including applications where solid dimensional stone is specified or as an alternative when dimensional stone is too heavy to be used economically. Applications include new exterior and interior applications and renovations and retrofits.
INSTALLATION PRINCIPLES

RAINSCREEN SYSTEM
Stick-Build & Pre-Assembled

PRE-FAB WALL SYSTEM

UNITIZED FACADE INTEGRATION TO OTHER ASSEMBLIES
An air pressurized cavity wall system designed to eliminate water penetration and allow ventilation. This system consists of two options: **stick-build cladding** where installation is panel by panel, and **pre-assembled cladding** where the panels are prefabricated and installed as a single unit. This results in faster installation and minimizes connection points to substrate.

- Continuous insulation and AWB.
- Achieves irregular designs.
- Precise installation.
- Stick-build requires a backup wall, whereas preassembled requires structural slabs only.
- Panels can span floor to floor and be attached to slabs only.
- Pre-Assembled has faster installation since the panels are prefabricated and installed as one unit.
- Less connection points allow for reduced thermal bridging.
PRE-FAB WALL SYSTEM

The system is a hybrid of window wall and precast architectural wall panels, spanning slab to slab and transferring all the component loads to the building structure.

- Installation from inside.
- Rapid, year-round installation.
- Slab to slab panel sizes.
- Reduced costs for design, transportation & installation.
- No need for structural backup of the wall.
- Lightweight panel system (no tower crane & concrete embeds needed).
UNITIZED FACADE INTEGRATION TO OTHER ASSEMBLIES

Integration into window walls, curtain walls, mega-panels, modular systems, etc by working with other service providers. This allows for a uniform installation system for the entire building based on prefabricated wall assemblies.

- Preassembled solution for Integration into window walls, curtain walls, mega-panels, modular systems, etc by working with other service providers.
- Prefabricated units contain supporting structure and exterior wall panels.
- Quick installation done all at once.
- Large panel sizes (12’ x 25’) and slab to slab connections.
- Prefabricated wall assemblies made and sent to site.
CUSTOMIZABLE INTEGRATIONS & SPECIAL PROJECTS

Our active and non-active cladding panels can be incorporated into any pre-set custom framing system or a new system can be developed as per any requirement.

- Custom shapes are achieved through prefabricated panel assemblies.
- Compatible with manual or automated movable panel system, which can be an added benefit for active panels.
- With the combination of active, non-active panels & voids in between, the essence of a perforated facade can be captured.
Cladify and Mitrex panels are very versatile and are only limited by the imagination in terms of how they can be used. They can be used in place of any other cladding product, including applications where solid dimensional stone is specified, or as an alternative when dimensional stone is too heavy to be used in an economical manner. Applications include new exterior and interior applications, and renovations and retrofits.

APPLICATIONS

OUR STORY

Our sustainable facades product testing and results are above and beyond the minimums required by building and PV codes, and our sustainable facades provide LEED points.

CERTIFICATIONS

Our sustainable facades product testing and results are above and beyond the minimums required by building and PV codes, and our sustainable facades provide LEED points.
We are committed to producing the finest quality panels available and observe rigorous quality control procedures and testing. Architects, designers, specifiers, and end-users receive the peace of mind that comes from knowing that the panels have been subjected to testing well beyond the minimum codes. For more information, see the Appendix.
LEED CERTIFICATES

LEED (Leadership in Energy and Environmental Design) is the most widely used green building rating system in the world. Available for virtually all building types, LEED provides a framework for healthy, highly efficient, and cost-effective green buildings. LEED certification is a globally recognized symbol of sustainability achievement and leadership.

Our solutions can meaningfully contribute to new builds and retrofits gaining top LEED designations. Our cladding system allows buildings to have outstanding energy efficiency. Cladify can contribute to a possible 33 points for a project, while Mitrex can contribute up to 40 points.
We are not just about products – we will work with architects, engineers, and field technologists to understand our products and use them to solve real-world design or construction problems. Further, an exceptional warranty guarantees our facades will last for years.
CONSULTING SERVICES

We can help you with everything from complex design challenges to never-been-done-before concepts to achieving demanding construction budgets. With more than 20+ years of application experience, we can help you with planning, budgets, application, and project management.

PLANNING STAGES
- Materials planning.
- Detailed scheduling.
- Construction drawing support.
- Material specifications.

BUDGET ASSESSMENT
- Budget review.
- Ways to reduce cost.
- Detailed scheduling.

APPLICATION SOLUTIONS
- Installation methods and analysis.
- Materials solutions.
- Performance quality and analysis.

PROJECT / CONSTRUCTION MANAGEMENT
- Plan, assess, and report all aspects of the project until completion.
- Oversee the project from the beginning stages until it is completed.
EXCEPTIONAL WARRANTY

Our panels feature an exceptional warranty. The panels have a lifetime guarantee and will not delaminate for the life of the structure, provided they are installed properly using certified installers. For our solar facades, the warranty ensures the hardware will last for 25 years and guarantees that after 25 years the minimum efficiency will be 80% of the original energy generation.
Take a look at our existing and in development projects.
AQUABELLA

DEVELOPER: Tridel, Hines
ARCHITECT: 3XN, Kirkor Architects and Planners
BUILDING TYPE: Condo, Retail

NON-ACTIVE

BIANCO BEIGE
Porcelain

CLOSION CREAM
Porcelain

PUNTI MARRONI
Porcelain

PURE WHITE
Porcelain

PORTFOLIO
SOLAR BRICK FACADE

PROJECT SIZE: 4,000 SQFT
POWER OUTCOME: 59kW System
BUILDING TYPE: Industrial
ONE RAINSFORD

DEVELOPER: The Riedel Group
ARCHITECT: Richard Ziegler
BUILDING TYPE: Condo, Retail

MOCA CREAM LIMESTONE
Natural Stone
ACTIVE

INDUSTRIAL BIPV WALL

CUSTOM DESIGN
Solar Stone

PROJECT SIZE: 10,000 SQFT
POWER OUTCOME: 110 kW System
BUILDING TYPE: Industrial
NON-ACTIVE

AURA CONDOS

CUSTOM COLOUR
Coated Aluminum

PORTUGUESE LIMESTONE
Natural Stone

DEVELOPER:
Canderel Residential
ARCHITECT:
Graziani + Corazza Architects Inc.
BUILDING TYPE:
Condo, Retail
MITREX & CLADIFY
HEADQUARTERS

NON-ACTIVE & ACTIVE

PROJECT SIZE:
Total: 20,000 SQFT
Active: 6,000 SQFT

POWER OUTCOME:
60kW System

BUILDING TYPE:
Office

POLARIS
Solar Solid Colour

BIANCO THASSOS
Porcelain

PROJECTS
NON-ACTIVE & ACTIVE
PROJECTS

THE MONTGOMERY

NON-ACTIVE

DEVELOPER:
Rockspot Group, Woodbourne
Canada Management, Inc.

ARCHITECT:
Raw Design, ERA Architects

BUILDING TYPE:
Rental, Retail

INDIANA LIMESTONE
Coated Aluminum

CUSTOM COLOUR
Natural Stone
MIDLAND COURTHOUSE

PROJECT SIZE: 10,000 SQFT
POWER OUTCOME: 280kW
BUILDING TYPE: Government

NOCCIOLA
Solar Wood

CUSTOM COLOUR
Solar Solid Colour

M&C architects
NON-ACTIVE

BEANFIELD CENTRE-HOTEL X PEDESTRIAN BRIDGE

INDIANA LIMESTONE
Natural Stone

DEVELOPER:
EllisDon
ARCHITECT:
NORR Architects
BUILDING TYPE:
Architectural Feature
THE SEE INSTITUTE, DUBAI

ACTIVE

PROJECT SIZE: 1,500 SQFT
POWER OUTCOME: 20kW
BUILDING TYPE: Institutional

CUSTOM DESIGN
Solar Metal

POLARIS
Solar Solid Colour
THE SHOPS AT LANSDOWNE PARK

DEVELOPER:
Trinity Development Group
ARCHITECT:
Petroff Partnership Architects
BUILDING TYPE:
Commercial

WALLACE CREEK
Natural Stone

ABERDEEN
Brick
PROJECT SIZE:
- Solar Cladding: 44,483 SQFT
- Solar Railing: 655 LFT
POWER OUTCOME:
- 375kW
BUILDING TYPE:
- Residential

ACTIVE
591 FINCH WEST

CUSTOM COLOUR
Solar Solid Colour

PRIME
design build
DEVELOPER: Dalhousie University
ARCHITECT: Moriyama & Teshima Architects
BUILDING TYPE: Institutional

COLLABORATIVE HEALTH EDUCATION BUILDING (CHEB)

WALLACE CREEK Natural Stone
PERLATO EUROPA Natural Stone
Our composite panels with honeycomb technology perform exceptionally well in several areas: core strength, impact resistance, and versatility.
Our sustainable facade panels perform very well when compared to traditional options on the market including masonry and natural stone, ACM/ACP, and precast concrete. Check out the table to see how our panels compare regarding mechanical properties and performance.

<table>
<thead>
<tr>
<th></th>
<th>SUSTAINABLE FACADE PANELS</th>
<th>MASONRY & NATURAL STONE</th>
<th>ACM</th>
<th>PRECAST CONCRETE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACOUSTIC PROPERTIES</td>
<td>MED</td>
<td>MED</td>
<td>LOW</td>
<td>MED</td>
</tr>
<tr>
<td>CHEMICAL & CORROSION RESISTANCE</td>
<td>HIGH</td>
<td>LOW</td>
<td>HIGH</td>
<td>LOW</td>
</tr>
<tr>
<td>COMPRESSION STRENGTH</td>
<td>HIGH</td>
<td>HIGH</td>
<td>LOW</td>
<td>HIGH</td>
</tr>
<tr>
<td>FIRE RESISTANCE</td>
<td>HIGH</td>
<td>VERY HIGH</td>
<td>LOW</td>
<td>VERY HIGH</td>
</tr>
<tr>
<td>FLATNESS DEFLECTION, STIFFNESS</td>
<td>VERY HIGH</td>
<td>LOW</td>
<td>MED</td>
<td>LOW</td>
</tr>
<tr>
<td>IMPACT RESISTANCE</td>
<td>VERY HIGH</td>
<td>MED</td>
<td>LOW</td>
<td>VERY HIGH</td>
</tr>
<tr>
<td>THERMAL EFFICIENCY</td>
<td>HIGH</td>
<td>MED</td>
<td>LOW</td>
<td>MED</td>
</tr>
<tr>
<td>WATER & MOISTURE RESISTANCE</td>
<td>HIGH</td>
<td>LOW</td>
<td>HIGH</td>
<td>MED</td>
</tr>
</tbody>
</table>
The aluminum honeycomb core ensures high strength and low weight of the panels. With varying thicknesses, any of your building and design needs are met.

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Relative Stiffness</th>
<th>Relative Strength</th>
<th>Relative Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Metal Block 1"</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Honeycomb Sandwich 2"</td>
<td>700 7X Stiffer</td>
<td>350 3.5X Stronger</td>
<td>103 3% Weight Increase</td>
</tr>
<tr>
<td>Thicker Sandwich 4"</td>
<td>3700 37X Stiffer</td>
<td>925 9.25X Stronger</td>
<td>106 6% Weight Increase</td>
</tr>
</tbody>
</table>
Aluminum Honeycomb Core

Maximum Stretched Size of Nodes

<table>
<thead>
<tr>
<th>Node (A) (mm)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7.5</th>
<th>10</th>
<th>12</th>
<th>15</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Size (D) (mm)</td>
<td>1/4</td>
<td>1/3</td>
<td>3/8</td>
<td>1/2</td>
<td>3/4</td>
<td>4/5</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Aluminum Foil Thickness (mm)</td>
<td>0.04 - 0.06</td>
<td>0.04 - 0.08</td>
<td></td>
</tr>
</tbody>
</table>

Compressive & Shear Strength - Room Temperature

<table>
<thead>
<tr>
<th>Density (Kg/M³)</th>
<th>Cell Size (D)</th>
<th>Stabilized Compression Strength (MPa)</th>
<th>Stabilized Modulus (MPa)</th>
<th>Parallel to Glue L Direction Strength (MPa)</th>
<th>Parallel to Glue L Direction Modulus (MPa)</th>
<th>W Direction Strength (MPa)</th>
<th>W Direction Modulus (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29 (1.8)</td>
<td>19 (3/4)</td>
<td>0.9</td>
<td>165</td>
<td>0.65</td>
<td>110</td>
<td>0.4</td>
<td>55</td>
</tr>
<tr>
<td>37 (2.3)</td>
<td>9.5 (3/8)</td>
<td>1.4</td>
<td>240</td>
<td>1.4</td>
<td>190</td>
<td>0.45</td>
<td>90</td>
</tr>
<tr>
<td>42 (2.6)</td>
<td>12.7 (1/2)</td>
<td>1.5</td>
<td>275</td>
<td>1.5</td>
<td>220</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>54 (3.4)</td>
<td>6.35 (1/4)</td>
<td>2.5</td>
<td>540</td>
<td>2.5</td>
<td>260</td>
<td>0.85</td>
<td>130</td>
</tr>
<tr>
<td>59 (3.7)</td>
<td>9.5 (3/8)</td>
<td>2.6</td>
<td>630</td>
<td>2.6</td>
<td>280</td>
<td>0.9</td>
<td>140</td>
</tr>
<tr>
<td>83 (5.2)</td>
<td>6.35 (1/4)</td>
<td>4.6</td>
<td>1000</td>
<td>4.6</td>
<td>440</td>
<td>1.5</td>
<td>220</td>
</tr>
</tbody>
</table>
Our solutions can meaningfully contribute to new builds and retrofits gaining top LEED designations. Our cladding system allows buildings to have outstanding energy efficiency.
Non-active panels can contribute to a possible 33 points for a project.

Energy & Atmosphere (EA)
The Energy and Atmosphere (EA) category is about designing a building that uses as little energy as possible through conservation, efficiency, and the use of alternative renewable energy sources. The maximum points available in this category are 17, with up to 10 points available for optimizing energy performance.

Maximum Points Available in Category
- Optimize Energy Performance
- On-Site Renewable Energy
- Enhanced Commissioning
- Enhanced Refrigerant Management
- Measurement and Verification
- Green Power

How Many Points Can Cladify Contribute
- Optimize energy performance

Materials and Resources (MR)
The Materials and Resources (MR) category is about minimizing the energy and environmental impacts associated with the extraction, processing, transport, maintenance, and disposal of building materials. A full life cycle approach is taken with materials, vs a one-time consideration. The maximum points available in this category are 14, with up to 11 points available for recycled content.

Maximum Points Available in Category
- Storage and Collection of Recyclables
- Building Reuse: Maintain Existing Walls, Floors, and Roof
- Building Reuse: Maintain Interior Non-Structural Elements
- Construction Waste Management
- Material Reuse
- Rapidly Renewable Materials
- Certified Wood

How Many Points Can Cladify Contribute
- Recycled Content
- Regional Materials
- Building Reuse
- Construction Waste Management
- Material Reuse

Indoor Environmental Quality (EQ)
The Indoor Environmental Quality (EQ) category addresses indoor air quality and thermal, visual, and acoustic comfort. This comfort has been shown to enhance productivity, decrease absenteeism, and improve the building's value. The maximum points available in this category are 15, with up to 7 points available for thermal comfort design.

Maximum Points Available in Category
- Minimum Indoor Air Quality Performance Required
- Environmental Tobacco Smoke (ETS)
- Outdoor Air Delivery Monitoring
- Increased Ventilation
- Construction Indoor Air Quality Management Plan: During Construction
- Construction Indoor Air Quality Management Plan: Before Occupancy
- Low-Emitting Materials: Adhesives and Sealants
- Low-Emitting Materials: Paints and Coatings
- Low-Emitting Materials: Flooring Systems
- Low-Emitting Materials: Composite Wood and Agrifibre Products
- Indoor Chemical and Pollutant Source Control
- Controllability of System: Lighting
- Controllability of System: Thermal Comfort
- Thermal Comfort: Design
- Thermal Comfort: Verification
- Daylight and Views: Daylight
- Daylight and Views: Views

How Many Points Can Cladify Contribute
- Thermal Comfort Design
- Thermal Comfort Verification
- Indoor Air Quality
- Low Emitting Materials

Innovation in Design (IN)
The Innovation and Design Process (IN) category is about finding new, innovative features for buildings, and going above and beyond sustainable building practices and strategies. The maximum points available in this category are 6, with up to 5 points available for innovation in design.

Maximum Points Available in Category
- Innovation in Design LEED® Accredited Professional

How Many Points Can Cladify Contribute
- Innovation in Design

Active panels can contribute up to 40 LEED points for a project.

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>DESCRIPTION</th>
<th>MAXIMUM POINTS AVAILABLE IN CATEGORY</th>
<th>HOW MANY POINTS CAN MITREX CONTRIBUTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENERGY AND ATMOSPHERE</td>
<td>The Energy and Atmosphere (EA) category is about designing a building that uses as little energy as possible through conservation, efficiency, and the use of alternative renewable energy sources.</td>
<td>35</td>
<td>Up to 28</td>
</tr>
<tr>
<td>MATERIALS AND RESOURCES</td>
<td>The Materials and Resources (MR) category is about minimizing the energy and environmental impacts associated with the extraction, processing, transport, maintenance, and disposal of building materials. A full life cycle approach is taken with materials, vs. a one-time consideration.</td>
<td>14</td>
<td>Up to 5</td>
</tr>
<tr>
<td></td>
<td>Storage and Collection of Recyclables, Building Reuse: Maintain Existing Walls, Floors, and Roof, Building Reuse: Maintain Interior, Non-Structural Elements, Construction Waste Management, Materials Reuse, Recycled Content, Regional Materials, Recycled Materials, Certified Wood</td>
<td></td>
<td>Recycled Content, Regional Materials, Rapidly Renewable</td>
</tr>
<tr>
<td>INDOOR ENVIRONMENTAL QUALITY</td>
<td>The Indoor Environmental Quality (EQ) category addresses indoor air quality and thermal, visual, and acoustic comfort. This comfort has been shown to enhance productivity, decrease absenteeism, and improve the building’s value.</td>
<td>15</td>
<td>Up to 2</td>
</tr>
<tr>
<td>INNOVATION IN DESIGN</td>
<td>The Innovation and Design Process (IN) category is about finding new, innovative features for buildings, and going above and beyond sustainable building practices and strategies.</td>
<td>6</td>
<td>Up to 5</td>
</tr>
<tr>
<td></td>
<td>Innovation in Design, LEED® Accredited Professional</td>
<td></td>
<td>Innovation in Design</td>
</tr>
</tbody>
</table>
As one of the world leaders in composite honeycomb panels, our products observe rigorous quality control procedures and testing well beyond the minimum codes. The large missile impact test is just an example.
LARGE MISSILE IMPACT

Our sustainable facades, unlike solid stone, stand up exceptionally well to the ASTM large missile impact test. With an impact resistance of up to 60 times greater than 1.5" dimensional granite, it holds up to flying debris. You can see that a 2”× 4”x 8’ wood stud literally bounces off the panel without shattering it.

The panels derive their strength from the aluminum honeycomb core bonded to the facing material with high performance aviation epoxy. Both components are used on aircraft fuselages whose surfaces experience wind speeds of thousands of miles per hour.

<table>
<thead>
<tr>
<th>STRENGTH</th>
<th>PER SQUARE FOOT (lb/ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 MPH</td>
<td>12.544</td>
</tr>
<tr>
<td>100 MPH</td>
<td>25.6</td>
</tr>
<tr>
<td>150 MPH (CATEGORY 5 HURRICANE)</td>
<td>57.6</td>
</tr>
<tr>
<td>300 MPH (F5 TORNADO)</td>
<td>230.4</td>
</tr>
<tr>
<td>CLADIFY / MITREX EPOXY BOND STRENGTH</td>
<td>44000</td>
</tr>
</tbody>
</table>
Buildings encapsulated in an envelope of flexible and ductile composite honeycomb panels have fire resistant properties, thoroughly protecting structures from multiple hazards.
The superior all-aluminum honeycomb panel core can catch flying debris resulting from hurricane force winds. And with a blast-resistant curtain wall and glazing, the blast-resistant cladding can mitigate the danger to life and property from blast events.

Non-Active Panels General Testing

<table>
<thead>
<tr>
<th>Test</th>
<th>Specification</th>
<th>Methodology</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt Spray Resistance</td>
<td>ASTM B117 - 16</td>
<td>1000 Hours of exposure</td>
<td>No deleterious effects</td>
</tr>
<tr>
<td>Specific Gravity and Water Absorption</td>
<td>ASTM C397 / C397M - 15</td>
<td>Limestone was tested</td>
<td>0.1992 @ 23 °C and 0.4% Respectively</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM C170 / C170M - 17</td>
<td>Limestone was tested</td>
<td>1.57 MPa (228psi)</td>
</tr>
<tr>
<td>Density of Sandwich Core</td>
<td>ASTM C271 / C271M - 16</td>
<td>12” x 12” x 0.6”</td>
<td>327 kg/m³ (20.42 lbm / ft³)</td>
</tr>
<tr>
<td>Shear Stress and Shear Modulus</td>
<td>ASTM C273 / C273M - 18</td>
<td>Compressive force applied until rupture.</td>
<td>Ultimate Core Shear Strength = 1.01 MPa (147 psi)</td>
</tr>
<tr>
<td>Flatwise Tensile Bond Strength</td>
<td>ASTM C297 / C297M - 16</td>
<td>Load was applied to the top and bottom layers of the composite panel</td>
<td>1.52 MPa (220 psi)</td>
</tr>
<tr>
<td>Edgewise Compressive Strength</td>
<td>ASTM C364 / C364M - 16</td>
<td>Compressive load was applied at the rate of 0.02 in/min</td>
<td>Ultimate Compressive Strength = 37.85 MPa (5490 psi)</td>
</tr>
<tr>
<td>Flatwise Compressive Strength</td>
<td>ASTM C365</td>
<td>Speed of testing – 2mm/min</td>
<td>1.92 MPa (278 psi)</td>
</tr>
<tr>
<td>Shear Strength by Beam Flexure</td>
<td>ASTM C393 / C393M - 16</td>
<td>Loaded in flexure with stone facing side in tension at a cross head speed of 0.025 in/min.</td>
<td>Maximum Core Shear Strength = 0.94 MPa (137 psi). Facing Bending Stress = 8.14 MPa (1180 psi)</td>
</tr>
<tr>
<td>Flexure Creep Evaluation</td>
<td>ASTM C480 / C480M - 16</td>
<td>Midspan loading setup was used with stone facing side in tension at cross head speed of 0.025 in/min until the target load of 400 lbf was achieved.</td>
<td>Net Creep (in/day) stone facing - 0.029.</td>
</tr>
<tr>
<td>Laboratory Aging of Sandwich Construction</td>
<td>ASTM C481 - 99 (Reapproved 2016)</td>
<td>Procedure A, for six repetitions of following load cycle is applied: Immerse in water at 50°C for 1h. Spray with steam at 95°C for 3h. Stone at -12°C for 20h. Heat at 100°C for 3h. Spray with steam at 95°C for 3h. Heat in dry air at 100 °C for 18h.</td>
<td>ASTM C273, C297, C364, C393 tests were reconducted after aging. The variation was +1.39%,-5-90%; +2.55%; -7.95% Note: +ve variation indicates decrease in strength after aging.</td>
</tr>
<tr>
<td>Resistance of Rapid Freezing and Thawing</td>
<td>ASTM C666 / C666M - 15</td>
<td>200 Cycles of rapid freeze and thaw (4°C to -18°C).</td>
<td>No visible change to stone, aluminum, or adhesive.</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>ASTM C880 / C880M - 15</td>
<td>Tested a composite panel with granite stone.</td>
<td>18.13 MPa (2630 psi).</td>
</tr>
<tr>
<td>Screw Withdrawal test</td>
<td>ASTM D7761</td>
<td>Testing Speed 2.5 mm/min</td>
<td>2046 N.</td>
</tr>
<tr>
<td>Damage Resistance Testing Sandwich Constructions</td>
<td>ASTM D7766 / D7766M - 16</td>
<td>Load was applied at the specimen midpoint through a 0.5 in. diameter hemispherical steel indenter at a constant rate of 0.01 in/min until a drop-in load was observed.</td>
<td>No panel deformation.</td>
</tr>
</tbody>
</table>
When designing for a single hazard such as a blast event, it is important to consider how the material selected for blast-resistance may conflict with protection from other hazards. It is good to know that our panels perform very well against all five of what the American FEMA Agency considers "extreme hazards".

<table>
<thead>
<tr>
<th>TEST</th>
<th>SPECIFICATION</th>
<th>METHODOLOGY</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Leakage Resistance</td>
<td>ASTM E283 - 04 (2012)</td>
<td>Air infiltration and exfiltration tests were performed using test pressure of 75 Pa (1.57 psf). The maximum air leakage rate was calculated and compared to the allowable air leakage.</td>
<td>Passed the test. Infiltration rate = 0.00 1/L/sm2 (0 cfm/ft2) & exfiltration rate = 0.01 1/L/sm2 (0.002/M2) at 75 Pa test pressure.</td>
</tr>
<tr>
<td>Static Pressure</td>
<td>ASTM E330-00 (2016)</td>
<td>The test specimen was also tested to failure with both positive and negative loads. The specimen only showed a permanent deflection of 0.10mm with a test load of +5760 Pa (120psf). The specimen failed at -5006 Pa; the rivets at the backsides of the specimen failed.</td>
<td>All the panels tested met or exceeded requirements.</td>
</tr>
<tr>
<td>Uniform Static Deflection</td>
<td>ASTM E330-02</td>
<td>The test specimen was tested to -3840 Pa (80.2 psf) to examine the deflection of 2440mm panel; the specimen showed a maximum net deflection of 4.34mm under positive test pressure and 4.93 mm under negative load.</td>
<td>No failure or permanent damage.</td>
</tr>
<tr>
<td>Fluorescent Ultraviolet Radiation Exposure</td>
<td>ASTM G154 - 16</td>
<td>2000 Hours of UV exposure.</td>
<td>No visible change to stone, aluminum, or adhesive.</td>
</tr>
<tr>
<td>Thermal Resistance</td>
<td>ASTM E363 - 11</td>
<td>Thermal Performance of Building Materials and Envelope Assemblies by Means of Hot Box Apparatus.</td>
<td>0.20 m2 °C/W (1.12W-ft2 - °F/BTU).</td>
</tr>
<tr>
<td>Linear Thermal Expansion</td>
<td>ISO 10545 - 8</td>
<td>Tested from room temperature to 100°C.</td>
<td>12.53 X 10 - 6 per °C.</td>
</tr>
<tr>
<td>Cyclic Pressure Loading</td>
<td>ASTM E1886 - 13a</td>
<td>Standard test method for performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic pressure differentials.</td>
<td>Passed the test. Over 3,500 positive and negative pressure cycles were applied at ±2880 Pa (60psf), equivalent wind of 165 mph.</td>
</tr>
<tr>
<td>Water Penetration Resistance</td>
<td>ASTM E331 - 00 (2016)</td>
<td>During the 15 - minute test period, using a pressure differential of 720 Pa (15.0 psf), there was no water leakage observed.</td>
<td>No water leakage.</td>
</tr>
</tbody>
</table>
Non-active composite panels are inherently flame resistant. They are composed of non-combustible materials that have passed the CAN/ULC S114 test. Non-active panels have a CAN/ULC S102 flame spread index of 0 and a smoke contribution of 40. The “smoke contribution” is primarily water vapour and can vary. This gives the panels a Class A rating under the NFPA standard or Class 1 rating under the UBC standard.

NON-ACTIVE PANELS FIRE TESTING

<table>
<thead>
<tr>
<th>TEST</th>
<th>METHOD</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCELERATED WEATHERING IN ACID BATH</td>
<td>100 cycles of freeze + heat -10 to 170 °F while partially submerges in a 4ph sulphurous acid solution</td>
<td>Less than 11% reduction in flexural strength. No significant difference in load deflection of exposed vs. not exposed specimens</td>
</tr>
<tr>
<td>TEMPERATURE CYCLING</td>
<td>Panel 42” by 58” exposed to 130 cycles rapid heating and cooling from 140 to 65 °F</td>
<td>No damage or browning Recorded 272 psi tensile bond strength</td>
</tr>
<tr>
<td>FASTENER PULL OUT STRENGTH</td>
<td>Self-drilling #8 screws by 1/2” long</td>
<td>97 lbs. average per screw</td>
</tr>
<tr>
<td>DEFLECTION</td>
<td>Panel 24” by 34” center loaded with 1,600 lbs Supports placed at 34”</td>
<td>Deflection less than 0.032</td>
</tr>
</tbody>
</table>

NON-ACTIVE PANELS SPECIFIC TESTING

<table>
<thead>
<tr>
<th>TEST</th>
<th>METHOD</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUNNEL TEST</td>
<td>ASTM E84</td>
<td>Sample passed the test with Flame Spread Index = 0; Smoke developed index = 0.</td>
</tr>
<tr>
<td>SURFACE BURNING CHARACTERISTICS OF BUILDING MATERIAL</td>
<td>CAN/ULC S102</td>
<td>The panel received the Flame Spread Rating = 0 & Smoke Developed Classification = 40</td>
</tr>
<tr>
<td>NON-COMBUSTIBILITY IN BUILDING MATERIALS</td>
<td>CAN/ULC S114</td>
<td>The Cladify material passed the test requirements. The observations were, there was no visible smoke or flame. The sample did not have a maximum temperature rise of more than 36 °C on the indicating thermocouple. The sample did not lose more than 20% of their original mass.</td>
</tr>
<tr>
<td>EVALUATION OF FIRE PROPAGATION CHARACTERISTICS OF EXTERIOR WALL ASSEMBLIES</td>
<td>NFPA 285</td>
<td>Passed.</td>
</tr>
<tr>
<td>MULTI-STORY FIRE TEST</td>
<td>CAN / ULC S134</td>
<td>Passed.</td>
</tr>
<tr>
<td>FIRE ENDURANCE TESTS OF BUILDING CONSTRUCTION AND MATERIALS</td>
<td>CAN / ULC S101</td>
<td>1 hr Fire Exposure - The Cladify material did not affect rated wall assembly.</td>
</tr>
</tbody>
</table>
Active panels testing and results are above and beyond the minimums required by building and PV codes. Testing is performed by independent laboratories and universities as well as our research and manufacturing facility.

General Testing

<table>
<thead>
<tr>
<th>TEST</th>
<th>SPECIFICATION</th>
<th>METHODOLOGY</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt Spray Resistance</td>
<td>ASTM B117-16</td>
<td>1000 Hours of exposure</td>
<td>No deleterious effects</td>
</tr>
<tr>
<td>Density of Sandwich Core</td>
<td>ASTM C277/C277M-16</td>
<td>12” X 12” X 0.6”</td>
<td>327 kg/m³ (20.42 lbm/(ft³))</td>
</tr>
<tr>
<td>Shear Stress and Shear Modulus</td>
<td>ASTM C273/C273M-118</td>
<td>Compressive force applied until rupture</td>
<td>Ultimate Core shear strength = 1.01 MPa (147 psf) Core shear Modulus = 10.9 MPa (1585 psi)</td>
</tr>
<tr>
<td>Flatwise Tensile Bond Strength</td>
<td>ASTM C299/C299M-16</td>
<td>Load was applied to the top and bottom layers of the composite panel</td>
<td>1.52 MPa (220 psi)</td>
</tr>
<tr>
<td>Edgewise Compressive Strength</td>
<td>ASTM C364/C364M-16</td>
<td>Compressive load was applied at a rate of 0.02 in/min</td>
<td>Ultimate Compressive Strength = 37.85 MPa (5490 psi)</td>
</tr>
<tr>
<td>Flatwise Tensile Bond Strength</td>
<td>ASTM C365</td>
<td>Load was applied to the top and bottom layers of the composite panel</td>
<td>1.52 MPa (220 psi)</td>
</tr>
<tr>
<td>Shear Strength by Beam Flexure</td>
<td>ASTM C393/C393M-16</td>
<td>Loaded in flexure with facing side in tension at a cross head speed of 0.025 in/min</td>
<td>Maximum Core Shear Strength = 0.94 MPa (137 psi) Facing Bending Stress = 8.14 MPa (1180 psi)</td>
</tr>
<tr>
<td>Flexure Creep Evaluation</td>
<td>ASTM C480/C480M-16</td>
<td>Midspan loading setup was used with facing side in tension at a cross head speed of 0.025 in/min until achieved</td>
<td>Net Creep (in/day) Facing: 0.029</td>
</tr>
<tr>
<td>Laboratory Aging of Sandwich Construction</td>
<td>ASTM C481-99</td>
<td>Procedure A, for six repetitions of following load cycle is applied. Immerse in water at 50 °C for 1h. Spray with steam at 95 °C for 3h. Store at -12 °C for 20h. Heated at 100 °C for 3h. Spray with steam at 95 °C for 3h. Heat in dry air at 100 °C for 18h</td>
<td>ASTM C273, C297, C364. C393 tests were reconducted after aging. the variation was +136 %, -5.90%; +2.55%; -7.95%</td>
</tr>
<tr>
<td>Resistance to Rapid Freezing and Thawing</td>
<td>ASTM C666/C666M-15</td>
<td>200 cycles of rapid freeze and thaw (4 °C to -18 °C)</td>
<td>No visible change to facing, aluminum, or adhesive</td>
</tr>
<tr>
<td>Flexural Strength</td>
<td>ASTM C880/C880M-15</td>
<td>Tested a Composite panel with Mitrex panel</td>
<td>22.83 MPa (3312.1 psi)</td>
</tr>
<tr>
<td>Tensile Properties of Adhesive Bond</td>
<td>ASTM C897-08 (2016)</td>
<td>The adhesive bond never failed</td>
<td>No Failure</td>
</tr>
</tbody>
</table>
A few of our mechanical tests include ASTM E1996-14a Missile Impact Testing, ASTM E331-00 Water Penetration Testing, ASTM E1886-13a Pressure Cycling Testing, and more.

![ACTIVE PANELS GENERAL TESTING](image-url)

<table>
<thead>
<tr>
<th>TEST</th>
<th>SPECIFICATION</th>
<th>METHODOLOGY</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensile Properties of Adhesive Bond</td>
<td>ASTM C897-08 (2016)</td>
<td>The adhesive bond never failed</td>
<td>No Failure</td>
</tr>
<tr>
<td>Screw Withdrawal Test</td>
<td>ASTM D1761</td>
<td>Testing Speed 2.5 mm/min</td>
<td>2124 N</td>
</tr>
<tr>
<td>Damage Resistance Testing of Sandwich Constructions</td>
<td>ASTM D7766/D7766M-16</td>
<td>Load was applied at the specimen midpoint through a 0.5 in. diameter hemispherical steel indenter at a constant rate of 0.01 in/min until a drop-in load was observed.</td>
<td>No panel deformation</td>
</tr>
<tr>
<td>Air Leakage Resistance</td>
<td>ASTM E283-04 (2012)</td>
<td>Air infiltration and exfiltration tests were performed using test pressure of 75 Pa (1.57 psf). The maximum air leakage rate was calculated and compared to the allowable air leakage.</td>
<td>Passed the test infiltration rate = 0.00 L/s·m² (0 cfm/ft²) & exfiltration rate = 0.01 L/s·m² (0.002 cfm/ft²) at 75 Pa test pressure</td>
</tr>
<tr>
<td>Static Pressure</td>
<td>ASTM E330-00 (2016)</td>
<td>The test specimen was also tested to failure with both positive and negative loads. The specimen only showed a permanent deflection of 0.10 mm with a test load of +5760 Pa (120 psf). The specimen failed at 5006 Pa, the rivets at the backside of the specimen failed.</td>
<td>All the panels tested met or exceeded requirements</td>
</tr>
<tr>
<td>Uniform Static Deflection</td>
<td>ASTM E330-02</td>
<td>The test specimen was tested to +3360 Pa (80.2 spf) to examine the deflection of 2440 mm panel, the specimen showed a maximum net deflection of 4.14 mm under positive test pressure and 4.93 mm under negative load.</td>
<td>No failure or permanent damage</td>
</tr>
<tr>
<td>Large Missile Impact Test</td>
<td>ASTM E1996-14a</td>
<td>Standard Specification for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Windborne Debris in Hurricanes.</td>
<td>Passed the test. A weighted 2+4 was fired at the Mitrex panel at 50 fps</td>
</tr>
<tr>
<td>Fluorescent Ultraviolet Radiation Exposure</td>
<td>ASTM C154-16</td>
<td>2000 hours of UV exposure</td>
<td>No visible change to Glass, aluminum, or adhesive</td>
</tr>
</tbody>
</table>
The active panels meet all fire safety certifications to ensure our PV products are code compliant. The fire tests include but are not limited to: CAN/ULC S134-92 Standard Method of Fire Test of Exterior Wall Assemblies, CAN/ULC S102:2018 Surface Burning Characteristics of Building Materials, CAN/ULC S114 Determination of Non-Combustibility, and ASTM E119 Fire Rating Test.

ACTIVE PANELS GENERAL TESTING

<table>
<thead>
<tr>
<th>TEST</th>
<th>SPECIFICATION</th>
<th>METHODOLOGY</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance</td>
<td>ASTM 1363-11</td>
<td>Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus</td>
<td>0.20 m2·oc/W (0.12 hr-ft2·ef/ITU)</td>
</tr>
<tr>
<td>Cyclic Pressure Loading</td>
<td>ASTM E1886-13a</td>
<td>Standard Test Method for Performance of Exterior Windows, Curtain Walls, Doors, and Impact Protective Systems Impacted by Missile(s) and Exposed to Cyclic Pressure Differentials</td>
<td>Passed the test. Over 3,500 positive and negative pressure cycles were applied at ± 2880 Pa (60 psi), equivalent wind load of 165 mph.</td>
</tr>
<tr>
<td>Water Penetration Resistance</td>
<td>ASTM E331-00(2016)</td>
<td>During the 15-minute test period, using a pressure differential of 720 Pa (15.0 psi), there was no water leakage observed.</td>
<td>No water leakage</td>
</tr>
</tbody>
</table>

ACTIVE PANELS FIRE TESTING

<table>
<thead>
<tr>
<th>TEST</th>
<th>SPECIFICATION</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunnel Test</td>
<td>ASTM E84</td>
<td>Sample passed the test with Flame Spread Index = 0; smoke developed index = 0.</td>
</tr>
<tr>
<td>Surface Burning Characteristics of</td>
<td>CAN/ULC S102</td>
<td>The panel received the Flame Spread Rating = 0 & Smoke Developed Classification = 40. As the Flame Spread Index was 0, the lab technicians from the Intertek and we are assuming the smoke developed (smoke developed Index = 40) was because of moisture.</td>
</tr>
<tr>
<td>Building Materials</td>
<td></td>
<td>Component material testing. Mitrex sample passed the test requirements. There was no visible smoke or flame. The sample did not have a maximum temperature rise of more than 36°C on the indicating thermocouple. The samples did not lose more than 20% of their original mass.</td>
</tr>
<tr>
<td>Non-Combustibility in Building</td>
<td>CAN/ULC S114</td>
<td>Passed</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td>1 hr Fire Exposure - The Mitrex Material did not affect the fire rated wall assembly.</td>
</tr>
<tr>
<td>Multi-Story Fire Test</td>
<td>CAN/ULC S134</td>
<td>Passed</td>
</tr>
<tr>
<td>Fire Endurance Tests of Building</td>
<td>CAN/ULC S110</td>
<td></td>
</tr>
<tr>
<td>Construction and Materials</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The certifications for PV modules include CSA, UL, and IEC. These certifications are based on numerous standards, some being: UL 61215, UL 61730, CSA C22.2 No. 61730, CSA C22.2 No. 61215, IEC 61215, and IEC 61730.

<table>
<thead>
<tr>
<th>TEST</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| MQT 01 Visual Inspection | To detect any visual defects in module
- Broken, cracked, or torn external surfaces
- Bent or misaligned external surfaces, including superstrates, substrates, frames and junction boxes to the extent that the operation of the PV module would be impaired
- Bubbles or delaminations forming a continuous path between electric circuit and the edge of the module
- If the mechanical integrity depends on lamination or other means of adhesion, the sum of the area of all bubbles shall not exceed 1% of the total module area
- Evidence of any melted or burned encapsulant, backsheet, front sheet, diode or active PV component
- Loss of mechanical integrity to the extent that the installation and operation of the module would be impaired
- Cracked/broken cells which can remove more than 10% of the cell’s photovoltaic active area from the electrical circuit of the PV module
- Voids in, or visible corrosion of any of the layers of the active (live circuitry of the module extending over more than 10% of any cell
- Broken interconnections, joints or terminals
- Any short-circuited live parts or exposed live electrical parts
- Module markings (label) are no longer attached, or the information is unreadable. |
| MQT 02 Maximum Power Determination | Checking the functionality of module and maximum power by checking the I-V curve. |
| MQT 03 Insulation Test | HiPot test with voltage of 3000V for PV modules with voltage system of 1000V for 1 min. again another HiPot test for 2 min with 1000V (system voltage). |
| MQT 04 Measurement of Temperature Coefficients | Determining temperature coefficients of current, voltage and peak power from module measurement. |
| MQT 05 Measurement of Nominal Module Operating Temperature (NMOT) | Determining the solar module characteristics (Voc, Isc and Pmax) in 800 W/m², 20 degree and wind speed of 1m/s. |
| MQT 06 Performance at STC and NMOT | Checking the short circuit current (Isc) and open circuit voltage (Voc) and IV-curve and comparing with the rating with tolerances for both STC (1000 W/m², 25 degree and AM = 1.5) and NMOT (800 W/m², 20 degree and wind speed of 1 m/s) conditions. |
| MQT 07 Performance at Low Irradiance | Determining the current-voltage characteristics of module at 25 degree and low irradiance of 200 W/m² and having IV curve result. |
| MQT 08 Outdoor Exposure Test | Installing the module outdoor with load around its maximum power for at least 60 kWh/m². No defect should be found. |
| MQT 09 Hot-Spot Endurance Test | Determining ability of module against hot-spot effects like solder melting or deterioration caused by faulty cells, mismatched cells, shadowing, or soiling. Using I-V curve tracer and IR scan to check the hot-spot by making shadow for every single cell. |
Check out the certifications for IEC 61215—focused on ensuring the quality of PV modules.

ACTIVE PANELS SOLAR QUALITY TESTING IEC 61215

<table>
<thead>
<tr>
<th>TEST</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQT 10 UV Preconditioning Test</td>
<td>Install the module in a chamber with only UV light (between 280nm to 320 wavelength and 320 to 400nm) with maximum 50W/m² and short-circuited module (or with load in maximum power) at the 60 degree temperature. Subject the module to total UV irradiance of at least 15kWh/m² in the wavelength range between 280 to 400nm.</td>
</tr>
<tr>
<td>MQT 11 Thermal Cycling Test</td>
<td>Testing the module by changing the temperature repeatedly. Module to be installed in the chamber with temperature sensor attached to its middle. The temperature should change with no more than 100 degree per hour and stay at -40 and 85 for at least 10 min. during the test, module will carry the current when temperature increasing from -40 to 85 degree only. Below process will be taken 50 or 200 times.</td>
</tr>
<tr>
<td>MQT 12 Humidity Freeze Test</td>
<td>Testing the module in high temperature and humidity followed by sub-zero temperature. Temperature will arise to 85 degree at maximum 100 degree per hour and keep the module for 20h in humidity of RH 85%. Then cool down to zero and then -40 degree by the speed of max 100 and 200 degree per hour. And keep for 30 min. do this process for 10 cycles.</td>
</tr>
<tr>
<td>MQT 13 Damp Heat Test</td>
<td>Testing the ability of module for long term humid environment. The module will be at 85-degree temperature and 85 percent relative humidity and keep it there for 1000 h (or 200 h for another test) and no defect should be found.</td>
</tr>
<tr>
<td>MQT 14 Robustness of Terminations</td>
<td>Checking capability of withstanding of cables and termination attachments against stresses. Force of 40N for 10s in different direction will be applied to junction box to test its retention on module surface. Cable will be pulled 50 times for 1s in the direction or the axis and then torque test will be applied for 1 min.</td>
</tr>
</tbody>
</table>
IEC 61215 ensures the modules meet the requirements for the design qualification and that they are suitable for long-term operation in general open-air climates. Our solar cladding panels met the test requirements guaranteeing the quality of our modules.

ACTIVE PANELS SOLAR QUALITY TESTING IEC 61215

<table>
<thead>
<tr>
<th>TEST</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MQT 15 Wet Leakage Current test</td>
<td>Putting module in the tank of required solution to a depth sufficient to cover all surfaces (except junction box not designed for immersion). Then doing HiPot test for 2 min at system voltage (1000V).</td>
</tr>
<tr>
<td>MQT 16 Static Mechanical Load Test</td>
<td>Testing ability of withstanding with minimum static load. During the test electrical continuity of internal circuit should be monitored. Fixing the module on mounting base and applying 1 hour of 15 times of design load (per manufacturer) in front and back of the module respectively for three cycles.</td>
</tr>
<tr>
<td>MQT 17 Hail Test</td>
<td>Testing the effect of hitting hail on the module surface (different location). Module will be installed on 90 degree tilt and room temperature. 11 hail ball at the diameter of minimum 25mm and speed of minimum 23 m/s will be fired through launcher. No major defect should be found.</td>
</tr>
<tr>
<td>MQT 18 Bypass Diode Testing</td>
<td>Checking the forward voltage of diode with short circuit current in 30, 50, 70 and 90 degree Celsius, then keep the current 100% and 125% of short circuit current for one hour and check the forward voltage at 75 degree. Then checking the functionality of diode after test. It could be done by successive IV-Curve tracer at maximum power by having shaded the strings to turn the diode ON or connecting the IV-Curve tracer in reverse polarity to turn the diode ON.</td>
</tr>
</tbody>
</table>
| MQT 19 Stabilization | Checking the power of module to make sure it is stabilized electrically. The power testing on three consecutive should follow below relation:

\[
(P_{\text{max}} - P_{\text{min}}) / P_{\text{average}} = x
\]

Stabilization will be done in the beginning to check the label of each module and at the end of test to make sure degradation did not affect on the modules. |
IEC 61730 ensures the PV modules are mechanically and electrically safe and operable. Learn more about the testing below.

ACTIVE PANELS SOLAR QUALITY TESTING IEC 61215

<table>
<thead>
<tr>
<th>TEST</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST 01 Visual Inspection</td>
<td>Checking any visual defect or change in the module; (marking, sharp edge, bubbles, crack, delamination, bent, mechanical integrity, …)</td>
</tr>
<tr>
<td>MST 02 Performance at STC</td>
<td>Checking the short circuit current (Isc) and open circuit voltage (Voc) and comparing with the rating with tolerances (same as MQT 06)</td>
</tr>
<tr>
<td>MST 03 Maximum Power Determination</td>
<td>Checking the functionality of module and maximum power by checking the I-V curve (same as MQT 02)</td>
</tr>
<tr>
<td>MST 04 Insulation Thickness Test</td>
<td>Checking the thickness of insulation thin layers (backsheet) in three points as worst cases at solder connection, edge of frameless PV modules, laminator membrane indents. The measurement should be bigger than requirement (0.15mm+tolerance%)</td>
</tr>
<tr>
<td>MST 05 Durability of Marking</td>
<td>Checking durability and legibility of markings on the solar panels with medium pressure 15 second by hand and cloth soaked with water and again with petroleum spirits</td>
</tr>
<tr>
<td>MST 06 Sharp Edge Test</td>
<td>Accessible part of solar modules should be smooth and free from sharp edges, burrs, …</td>
</tr>
<tr>
<td>MST 07 Bypass Diode Functionality Test</td>
<td>Checking the functionality of diode after test. It could be done by successive IV-Curve tracer at maximum power by having shaded the strings to turn the diode ON or connecting the IV-Curve tracer in reverse polarity to turn the diode ON. (same as MQT 18.2)</td>
</tr>
<tr>
<td>MST 11 Accessibility Test</td>
<td>Checking the insulation resistance off all part of module that may be accessible to the live part by cylindrical test fixture at the pressure of 10N and at all time the resistance should be higher than 1MΩ</td>
</tr>
</tbody>
</table>

ACTIVE PANELS SOLAR SAFETY TESTING IEC 61730

<table>
<thead>
<tr>
<th>TEST</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC classified the tests in few categories just to have better view on all tests as follow:</td>
<td></td>
</tr>
<tr>
<td>• Environmental stress tests (MST 51, MST 52, MST 53, MST 54, MST 55, MST 56)</td>
<td></td>
</tr>
<tr>
<td>• General visual tests (MST 01, MST 02, MST 03, MST 04, MST 05, MST 06, MST 07)</td>
<td></td>
</tr>
<tr>
<td>• Electrical shock hazard tests (MST 11, MST 12, MST 13, MST 14, MST 16, MST 17, MST 42)</td>
<td></td>
</tr>
<tr>
<td>• Fire hazard tests (MST 21, MST 22, MST 23, MST 24, MST 25, MST 26)</td>
<td></td>
</tr>
<tr>
<td>• Mechanical stress tests (MST 32, MST 33, MST 34, MST 35, MST 36, MST 37, MST 42)</td>
<td></td>
</tr>
</tbody>
</table>
IEC 61730 ensures the PV modules are mechanically and electrically safe and operable in terms of the construction of the panels.

ACTIVE PANELS SOLAR SAFETY TESTING IEC 61730

<table>
<thead>
<tr>
<th>TEST</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST 12 Cut susceptibility Test</td>
<td>Testing withstanding of polymeric material surface of module with specific fixture with force of 9N.</td>
</tr>
<tr>
<td>MST 13 Continuity Test of Equipotential Bonding</td>
<td>Verifying continuous path between accessible conductive parts. Applying 2.5 times of maximum protective device current (for example, I5A x 2.5) and checking the voltage for different conductive parts. Resitive should be less than 0.1Ω.</td>
</tr>
<tr>
<td>MST 14 Impulse Voltage Test</td>
<td>Testing capability of insulation of PV module against overvoltage (from atmosphere-like impulse and switching of low-voltage equipment). Module will be covered by conductive metal foil and surge voltage will be applied to module. Dielectric should not breakdown.</td>
</tr>
<tr>
<td>MST 15 Insulation Test</td>
<td>HiPot test with voltage of 6000V for PV modules with voltage system of 1000V. (same as MQT 03)</td>
</tr>
<tr>
<td>MST 16 Wet Leakage Current Test</td>
<td>Putting module in the tank of required solution to a depth sufficient to cover all surfaces (except junction box not designed for immersion). Then doing HiPot test for 2 min at system voltage (1000V). (same as MQT 15)</td>
</tr>
<tr>
<td>MST 17 Temperature Test</td>
<td>Putting module on black painted wooden platform and checking the temperature of different location of module (normalised by changing of ambient temperature) in maximum power and no wind. Normalized temperature should not reach T1/T1E/T1T. (for example, 90 degree)</td>
</tr>
<tr>
<td>MST 18 Hot-Spot Endurance</td>
<td>Determining ability of module against hot-spot effects like solder melting or deterioration caused by faulty cells, mismatched cells, shadowing, or soiling. Using I-V curve tracer and IR scan to check the hot-spot by making shadow for every single cell. (same as MQT 29)</td>
</tr>
</tbody>
</table>
Rest assured that our facades with integrated solar components meet the utmost standards for photovoltaic equipment.

<table>
<thead>
<tr>
<th>TEST</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST 23 Fire Test</td>
<td>Fundamental requirements for fire safety are not internationally harmonised. Fire resistance requirements for a PV module intended for building applications are defined in local or national building codes.</td>
</tr>
<tr>
<td>MST 24 Ignitability Test</td>
<td>Testing ignitability of vertical mounted PV by direct small flame under zero irradiance by external heat source. All exposed combustible material will be tested (but junction boxes, cables, and connectors). Flame will be applied at least 40mm above the bottom edge of the sample for 15s.</td>
</tr>
<tr>
<td>MST 25 Bypass Diode thermal test</td>
<td>Checking the forward voltage of diode with short circuit current in 30, 50, 70 and 90 degree Celsius, then keep the current 100% and 125% of short circuit current for one hour and check the forward voltage at 75 degree. Then following MST 07 for checking the functionality of diode. (same as MQT 18)</td>
</tr>
<tr>
<td>MST 26 Reverse Current Overload Test</td>
<td>Checking the risk of fire or ignition in reverse current situation. Putting module facedown to the mounting and covered by white tissue paper. Back of module should be covered by single layer of white tissue paper. With no irradiance, 1.55 times of maximum fuse size should apply to the module in reverse direction. No glass break or flaming should happen.</td>
</tr>
<tr>
<td>MST 32 Module Breakage Test</td>
<td>The weight of bag is around 45.5kg. Module should be mount on the frame and bag should be max 13mm far from surface and max 50mm from the centre of module. Drop height should be 300mm, and release after stabilizing.</td>
</tr>
<tr>
<td>MST 33 Screw Connections Test</td>
<td>Testing screws and nuts in completely loosening and tightening (to the specified torque) for five times.</td>
</tr>
<tr>
<td>MST 34 Static Mechanical Load</td>
<td>Testing ability of withstanding with minimum static load. During the test electrical continuity of internal circuit should be monitored. Fixing the module on mounting base and applying 1 hour of 1.5 times of design load (per manufacturer) in front and back of the module respectively for three cycles. (same as MQT 16)</td>
</tr>
</tbody>
</table>
Specific areas of focus for IEC 61730 include safe electrical and mechanical operation, prevention of electric shock, fire hazards, or personal injury from module handling. Read through our detailed testing documentation to learn more about our sustainable facades.

<table>
<thead>
<tr>
<th>TEST</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST 35 Peel Test</td>
<td>This test is only for cemented joint. Not sure this test is applicable to our product (based on the tables 3 and 4 of IEC 61730 1). But include tensile test in some adhesion part between encapsulant and back-sheet. Module should be unframed.</td>
</tr>
<tr>
<td>MST 36 Lap Shear Strength Test</td>
<td>Same as MST 35 but for glass/glass module tensile test.</td>
</tr>
<tr>
<td>MST 37 Material Creep Test</td>
<td>Checking the adhesive between different part of module (frontsheet and backsheet, F5 or B5 to mounting system, J8 to B5) will be done in this test. Putting the module in chamber on mounting base and increasing temperature to 105 degree for 200 hours.</td>
</tr>
<tr>
<td>MST 42 Robustness of Termination Test</td>
<td>Checking capability of withstanding of cables and termination attachments against stresses. Force of 40N for 10s in different direction will be applied to junction box to test its retention on module surface. Cable will be pulled 50 times for 1s in the direction or the axis and then torque test will be applied for 1 min. (same as MQT 14)</td>
</tr>
<tr>
<td>MST 51 Thermal Cycling Test</td>
<td>Testing the module by changing the temperature repeatedly. Module to be installed in the chamber with temperature sensor attached to its middle. The temperature should change with no more than 100 degree per hour and stay at -40 and 85 for at least 10 min. during the test, module will carry the current when temperature increasing from -40 to 80 degree only. Below process will be taken 50 or 200 times. (same as MQT 11)</td>
</tr>
</tbody>
</table>
ACTIVE PANELS SOLAR SAFETY TESTING IEC 61730

<table>
<thead>
<tr>
<th>TEST</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MST 52 Humidity Freeze Test</td>
<td>Testing the module in high temperature and humidity followed by sub-zero temperature. Temperature will arise to 85 degree at maximum 100 degree per hour and keep the module for 20h in humidity of RH 85%. Then cool down to zero and then -40 degree by the speed of max 100 and 200 degree per hour. And keep for 30 min. do this process for 10 cycles. (same as MQT 12)</td>
</tr>
<tr>
<td>MST 53 Damp Heat Test</td>
<td>Testing the ability of module for long term humid environment. The module will be at 85-degree temperature and 85 percent relative humidity and keep it there for 1000 h (or 200 h for another test) and no defect should be found. (same as MQT 13)</td>
</tr>
<tr>
<td>MST 54 UV Test</td>
<td>Install the module in a chamber with only UV light (between 280nm to 320 wavelength and 320 to 400nm) with maximum 250W/m² and short circuited module (or with load in maximum power) at the 60 degree temperature. Subject the module to total UV irradiance of at least 15kWh/m² or 60kWh/m² in the wavelength range between 280 to 400nm. (same as MQT 10 for 15kWh/m²)</td>
</tr>
<tr>
<td>MST 55 Cold Conditioning</td>
<td>Install the module in a chamber with temperature sensor and keep it there for 48 h with -40 degree. No defect should be found.</td>
</tr>
<tr>
<td>MST 56 Dry Heat Conditioning</td>
<td>Install the module in a chamber with temperature sensor. Keep the module in a chamber with 105 degree and less than 50% relative humidity for 200 h. No defect should be found.</td>
</tr>
</tbody>
</table>